A model based, anatomy dependent method for ultra-fast creation of primary SPECT projections

نویسندگان

  • Faraz Kalantari
  • Hossein Rajabi
  • Mohsen Saghari
  • Alireza Emami Ardekani
چکیده

Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the effect of body attenuation and imaging system response for fast creation of noise free SPECT projections. Methods: Collimator detector response (CDR) was modeled by layer by layer blurring of activity phantom using suitable Gaussian functions. Using the attenuation phantom, in each angle, attenuation factor (AF) was calculated for each voxel. This calculated AF is the weight for the emission voxel and states the detection probability of photons that are emitted from that voxel. Finally weighted ray sum of the blurred phantom was driven to create a projection. For the next projection, our phantom was rotated and the procedure was repeated until all projections were acquired. Results: Root Mean Square error (RMS) between all 60 modelled projection and real MC simulated projections was decreased from 0.58 ± 0.15 using simple Radon to 0.19 ± 0.03 using our suggested model. This value was 0.56 ± 0.16 using blurred Radon without attenuation modelling, and 0.21 ± 0.03 using attenuated Radon without CDR modelling. Conclusion: Our suggested model that considers the effect of both attenuation and CDR simultaneously results in more accurate analytical projections compared with conventional Radon model. Creation of 60 primary SPECT projections in less than one minute may make this method as a proper alternative for MC simulation. This model can be used as a forward projector during iterative image reconstruction for correction of CDR and attenuation that is necessary for quantitative SPECT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model based, anatomy dependent method for ultra-fast creation of primary SPECT projections

  Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the eff...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Attenuation Correction in SPECT during Image Reconstruction using an Inverse Monte Carlo Method: A Simulation Study

Introduction: The main goal of SPECT imaging is to determine activity distribution inside the organs of the body. However, due to photon attenuation, it is almost impossible to do a quantitative study. In this paper, we suggest a mathematical relationship between activity distribution and its corresponding projections using a transfer matrix. Monte Carlo simulation was used to find a precise tr...

متن کامل

Optimization of an ultra-high-resolution rectangular pixelated parallel-hole collimator with a CZT pixelated semiconductor detector for HiRe-SPECT system

Introduction: In nuclear medicine, the use of a pixelated semiconductor detector such as CZT is an of growing interest for introducing new devices. Especially, the spatial resolution can be improved by using a pixelated parallel-hole collimator with equal holes and pixel sizes based on the pixelated detector. The purpose of this study was to compare the effect of pixelated and ...

متن کامل

Conventional Voxel in Tomographic Reconstruction Based upon Plane-Integral Projections – Use It or Lose It?

Introduction: While the necessity of replacing voxels with blobs in conventional tomographic reconstruction based upon line-integrals is clear, it is not however well-investigated in plane- integral-based reconstruction. The problem is more challenging in convergent-plane projection reconstruction. In this work, we are aiming at utilizing blobs as alternative to voxels. <stron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011